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Abstract
We solve the Sp(N ) Heisenberg and SU(N ) Hubbard–Heisenberg models on
the anisotropic triangular lattice in the large-N limit. These two models may
describe respectively the magnetic and electronic properties of the family of
layered organic materials κ-(BEDT-TTF)2X. The Heisenberg model is also
relevant to the frustrated antiferromagnet, Cs2CuCl4. We find rich phase
diagrams for each model. The Sp(N ) antiferromagnet is shown to have
five different phases as a function of the size of the spin and the degree of
anisotropy of the triangular lattice. The effects of fluctuations at finite N are
also discussed. For parameters relevant to Cs2CuCl4 the ground state either
exhibits incommensurate spin order, or is in a quantum disordered phase with
deconfined spin-1/2 excitations and topological order. The SU(N ) Hubbard–
Heisenberg model exhibits an insulating dimer phase, an insulating box phase,
a semi-metallic staggered flux phase (SFP), and a metallic uniform phase. The
uniform and SFP phases exhibit a pseudogap. A metal–insulator transition
occurs at intermediate values of the interaction strength.

1. Introduction

The family of layered organic superconductors κ-(BEDT-TTF)2X has attracted much exp-
erimental and theoretical interest [1, 2]. There are many similarities to the high-Tc cuprates,
including unconventional metallic properties and competition between antiferromagnetism
and superconductivity [3]. The materials have a rich phase diagram as a function of pressure
and temperature. At low pressures and temperatures there is an insulating antiferromagnetic
ordered phase; as the temperature is increased a transition occurs to an insulating paramagnetic
state. A first-order metal–insulator transition separates the paramagnetic insulating phase from
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a metallic phase; it is induced by increasing the pressure [4, 5]. The metallic phase exhibits
various temperature dependences which are different from that of conventional metals. For
example, measurements of the magnetic susceptibility and NMR Knight shift are consistent
with a weak pseudogap in the density of states [6, 7].

The main purpose of this paper is to attempt to describe the magnetic ordering, the
metal–insulator transition, and the unconventional metallic properties of these materials with
two simplified models. We model the magnetic ordering in the insulating phase with the
quantum Heisenberg antiferromagnet (HAF). We model the metallic phase as well as the
metal–insulator transition with a hybrid Hubbard–Heisenberg model. To substitute for the
lack of a small expansion parameter in either model, we enlarge the symmetry group from
the physical SU(2) ∼= Sp(1) spin symmetry to Sp(N ) (symplectic group) for the Heisenberg
model [8, 9] and to SU(N ) for the Hubbard–Heisenberg model [10, 11]. We then solve these
models in the large-N limit and treat 1/N as our systematic expansion parameter. In section 2
we briefly summarize the physical SU(2) Heisenberg and Hubbard–Heisenberg model on the
anisotropic triangular lattice. In section 3 we review the large-N theory of the Sp(N ) quantum
Heisenberg model. On the basis of the large-N solution of this model, we present the magnetic
phase diagram in the parameter space of quantum fluctuation nb/N (where nb is the number of
bosons in the Schwinger boson representation of the spin) and the magnetic frustration J2/J1.
We discuss the effects of finite-N fluctuations on the Sp(N ) magnetic phases with short-range
order (SRO). We also discuss how our results are relevant to understanding recent neutron
scattering experiments on Cs2CuCl4. In section 4 we review the large-N theory of the SU(N )
Hubbard–Heisenberg model. We present the phase diagram based on the large-N solution
in the parameter space of the dimensionless ratio of the nearest-neighbour exchange to the
hopping constant J1/t1 and the dimensionless anisotropy ratio J2/(J1 + J2). Away from the
two nested limits J1 = 0 and J2 = 0 we find a metal–insulator transition which occurs at finite
critical value of J1/t1. We also find that the density of states in the metallic state is suppressed
at low temperatures, in qualitative agreement with the unconventional metallic properties seen
in experiments. We conclude in section 5 with a brief review our results.

2. Heisenberg and Hubbard–Heisenberg models on the anisotropic triangular lattice

On the basis of a wide range of experimental results and quantum chemistry calculations of
the Coulomb repulsion between two electrons on the BEDT-TTF molecules, it was argued in
reference [3] that the κ-(BEDT-TTF)2X family are strongly correlated electron systems which
can be described by a half-filled Hubbard model on the anisotropic triangular lattice. The
Hubbard Hamiltonian is

H = −t1
∑
〈ij〉

[c†σ
i cjσ + H.c.] − t2

∑
〈〈ij〉〉

[c†σ
i cjσ + H.c.] +

U

2

∑
i

(c
†σ
i ciσ − 1)2. (1)

Here ciσ is the electron destruction operator on site i and there is an implicit sum over pairs of
raised and lowered spin indices σ = ↑,↓. Matrix element t1 is the nearest-neighbour hopping
amplitude, and t2 is the next-nearest-neighbour hopping along only one of the two diagonals of
the square lattice as shown in figure 1. The sum over 〈ij〉 runs over pairs of nearest-neighbour
sites and that over 〈〈ij〉〉 runs over next-nearest neighbours.

Physical insight can be attained by considering the Hubbard model for different values of
the ratio U/t . In the limit of large U/t the Hubbard model at half-filling is insulating and the
spin degrees of freedom are described by a spin-1/2 Heisenberg antiferromagnet [12]:

H = J1

∑
〈ij〉

�Si · �Sj + J2

∑
〈〈ij〉〉

�Si · �Sj (2)



Large-N solutions of the Heisenberg and Hubbard–Heisenberg models 5161

1t 1t
2t

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

J 2

J1 J1 y

x

Figure 1. The anisotropic triangular lattice with two types of bond. Note that this can also be
viewed as a square lattice with an additional next-nearest-neighbour interaction along only one of
the two diagonals.

where �Si is the spin operator on site i, and the exchange couplingsJ1 = 4t2
1 /U andJ2 = 4t2

2 /U .
Competition between J1 and J2 leads to magnetic frustration. Using parameters from quantum
chemistry calculations [13–15] it was estimated in reference [3] that J2/J1 ∼ 0.3 to 1 for the
κ-(BEDT-TTF)2X family. Hence, magnetic frustration is important. The frustrated Heisenberg
Hamiltonian interpolates between the square lattice (J2 = 0) and the linear chain (J1 = 0).
Much is known about these two limiting cases. Additional insight [16,17] comes by considering
different values of the ratio J2/J1. At J2 = 0, the square-lattice limit, there is long-range Néel
order with a magnetic moment of approximately 0.6 µB ; see reference [12]. If J2 is small but
non-zero, the magnetic moment will be reduced by magnetic frustration. At J2/J1 around 0.5,
quantum fluctuations combined with frustration should destroy the Néel ordered state. AsJ2/J1

is further increased, the system may exhibit spiral long-range order [17]. At J1 = J2, the lattice
is equivalent to the isotropic triangular lattice. Anderson suggested in 1973 that the ground state
could be a spin liquid without long-range order [18]. However, subsequent numerical work
indicated that there is long-range order with ordering vector �q = (2π/3, 2π/3) [19]. Finally, at
J1 = 0 the model reduces to decoupled Heisenberg spin-1/2 chains which cannot sustain long-
range spin order [12] as per the quantum Mermin–Wagner theorem. For J1 small but non-zero,
the system consists of spin-1/2 chains weakly coupled in a zigzag fashion. The case of two such
weakly coupled zigzag spin chains was studied by Okamoto and Nomura [20] and by White
and Affleck [21] who showed that there is a spin gap in the spectrum, � ∼ e−constant×J2/J1 , and
the ground state exhibits dimerization and incommensurate spiral correlations. Although our
system consists of an infinite number of weakly coupled spin chains instead of two chains, we
find similar behaviour.

As U/t decreases, charge fluctuations from electron hopping become significant.
Competition between hopping and Coulomb repulsion leads to a transition from the insulator
to a metal. We use the hybrid Hubbard–Heisenberg Hamiltonian [10, 11] with independent
parameters t , J , andU (where in generalJ 
= 4t2/U ) to describe some aspects of the transition:

H =
∑
〈ij〉

[
−t1(c

†σ
i cjσ + H.c.) + J1

(
�Si · �Sj − 1

4
ninj

)]

+
∑
〈〈ij〉〉

[
−t2(c

†σ
i cjσ + H.c.) + J2

(
�Si · �Sj − 1

4
ninj

)]

+
U

2

∑
i

(c
†σ
i ciσ − 1)2. (3)
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Here ni ≡ c
†σ
i ciσ is the number of fermions at site i. The Hamiltonian reduces to the Hubbard

model when J1 = J2 = 0 and the Heisenberg model for t1, t2 → 0. In the square-lattice
limit and at half-filling, perfect nesting drives the system to an antiferromagnetic insulator
at arbitrarily small value of the interactions. As diagonal hopping t2 is turned on, however,
nesting of the Fermi surface is no longer perfect and the metal–insulator transition (MIT)
occurs at non-zero critical interaction strength.

3. The Sp(N ) Heisenberg model

We first focus on the spin degree of freedom, appropriate to the insulating phase of the layered
organic materials, by solving the Heisenberg model in a large-N limit. Our choice of the
large-N generalization of the physical SU(2) spin-1/2 problem is dictated by the desire to
find an exactly solvable model which has both long-range-ordered (LRO) and short-range-
ordered (SRO) phases. This leads us to symmetric (bosonic) SU(N ) or Sp(N ) generalizations.
The former can only be applied to bipartite lattices. The latter approach has been applied to
the antiferromagnetic Heisenberg model on the square lattice with first-, second-, and third-
neighbour coupling (the J1–J2–J3 model) [8], the isotropic triangular lattice [22], and the
kagomé lattice [22]. As the anisotropic triangular lattice is not bipartite, we must choose the
Sp(N ) generalization [8].

3.1. Brief review of the approach

To ascertain the likely phase diagram of the frustrated Heisenberg antiferromagnet, we consider
the Sp(N ) symplectic group generalization of the physical SU(2) ∼= Sp(1) antiferromagnet
[8, 22]. The model can be exactly solved in the N → ∞ limit. Both LRO and SRO can
arise if we use the symmetric (bosonic) representations of Sp(N ). We begin with the bosonic
description of the SU(2) HAF, where it can be shown that apart from an additive constant, the
Hamiltonian may be written in terms of spin-singlet bond operators:

H = −1

2

∑
ij

Jij(εαβb
†α
i b

†β
j )(εγ δbiγ bjδ) (4)

where we have used the bosonic representation for spin operator

�Si = 1

2
b

†α
i �σβ

α biβ (5)

where α = ↑,↓ labels the two possible spins of each boson. The antisymmetric tensor, εαβ ,
is as usual defined to be

ε =
(

0 1
−1 0

)
. (6)

We enforce the constraint nb = b
†α
i biα = 2S to fix the number of bosons, and hence

the total spin, on each site. The SU(2) spin-singlet bond creation operator εαβb
†α
i b

†β
j may

now be generalized to the Sp(N )-invariant form Jαβb
†α
i b

†β
j . Global Sp(N ) rotations may be

implemented with 2N × 2N unitary matrices U:

b → Ub

U†J U = J . (7)
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Here

J =




1
−1

1
−1

. . .
. . .




(8)

generalizes the ε-tensor toN > 1, and biα with α = 1, . . . , 2N is the Sp(N ) boson destruction
operator. The Hamiltonian of the Sp(N ) HAF may then be written as

H = −
∑
ij

Jij

2N
(Jαβb

†α
i b

†β
j )(J γ δbiγ bjδ) (9)

where again the Greek indices run over 1, . . . , 2N , and the constraint b†α
i biα = nb is imposed

at every site of the lattice. We have rescaled Jij/2 → Jij/2N to make the Hamiltonian O(N).
For fixed J1/J2 we have a two-parameter (nb, N ) family of models with the ratio κ ≡ nb/N

determining the strength of the quantum fluctuations. In the physical Sp(1) limit, κ = 1
corresponds to spin-1/2. At large κ (equivalent to the large-spin limit of the physical SU(2)
model), quantum effects are small and the ground states break global Sp(N ) spin-rotational
symmetry. LRO then corresponds to Bose condensation which we quantify by defining

bimσ ≡
( √

Nxiσ

b̃im̃σ

)
. (10)

Here the spin-quantization axis has been fixed by introducing the paired-index notation
α ≡ (m, σ) with m = 1, . . . , N , σ = ↑,↓, and m̃ = 2, . . . , N . The c-number spinors xσ ,
when non-zero, quantify the Bose condensate fraction, and are given by 〈bimσ 〉 = √

Nδ1
mxiσ .

For sufficiently small κ , however, quantum fluctuations overwhelm the tendency to order and
there can be only magnetic SRO.

Upon inserting equation (10) into equation (9), decoupling the quartic boson terms within
the corresponding functional integral by introducing complex-valued Hubbard–Stratonovich
fields Qij directed along the lattice links, enforcing the constraint on the number of bosons on
each site with Lagrange multipliers λi, and finally integrating out the b-fields, we obtain an
effective action proportional to N . Thus, as N → ∞, the effective action may be replaced by
its saddle-point value. At the saddle point, the fields Qij , λi, and xiσ are expected to be time
independent, so the effective action can be put into correspondence with a suitable mean-field
Hamiltonian. The Hamiltonian may be diagonalized by a Bogoliubov transformation, yielding
a total ground-state energy EMF given by [22]

EMF [Q,λ]

N
=

∑
i>j

(
Jij

2
|Qij |2 − Jij

2
Qijε

σσ ′
xiσ xjσ ′ + H.c.

)

−
∑

i

λi

(
1 +

nb

N
− |xiσ |2

)
+

∑
k

ωk (11)

where ωk are eigenenergies obtained from diagonalizing the mean-field Hamiltonian. Finding
the ground state of the Sp(N ) HAF now reduces to the problem of minimizing EMF with
respect to the variables Qij and xiσ , subject to the Lagrange-multiplier constraints

∂EMF [Q,λ]

∂λi

= 0. (12)
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It is essential to note that the action possesses local U(1) gauge symmetry under local
phase rotations by angle θi(τ ):

biα → biαe−iθi(τ )

Qij → Qijeiθi(τ )+iθj (τ )

λi → λi +
∂θi

∂τ
.

(13)

This symmetry reminds us that the representation of spin operators in terms of the underlying
bosons is redundant as the phase of each boson field can be shifted by an arbitrary amount
without affecting the spin degree of freedom. Two gauge-invariant quantities of particular
importance for our classification of the phases are |Qij | and

∑
i λi.

Extrema of EMF are found numerically with the simplex-annealing method [23]. We
work with a lattice of 40 × 40 sites and check that this is sufficiently large to accurately
represent the thermodynamic limit. Constraint equation (12) is tricky, however, as EMF [λi]
is neither a minimum, nor a maximum with respect to the λi-directions at the saddle point.
The problem is solved by decomposing λi into its mean value λ̄ and the deviations from the
mean, δλi ≡ λi − λ̄. As λ̄ is gauge invariant, we solve the constraint equation (12) separately
for it by applying Newton’s method. The resulting EMF [λ̄, δλi] can then be maximized in the
remaining δλi-directions. Individual values of δλi are in general non-zero, but by definition it
must be the case that

∑
i δλi = 0.

3.2. The phase diagram of the Sp(N ) Heisenberg antiferromagnet

To make progress in actually solving the model, we now make the assumption that spontaneous
symmetry breaking, if it occurs, does not lead to a unit cell larger than four sites. Our choice
of unit cell is shown in figure 2.
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Figure 2. The 2 × 2-site unit cell for the Sp(N ) Heisenberg antiferromagnet on the anisotropic
triangular lattice. The complex-valued, directed, Q1

1- to Q8
1-fields live on the links of the square

lattice, while Q1
2 to Q4

2 live on the diagonal links. Arrows denote the orientation of the Qij -fields.

The 2 × 2 unit cell requires 12 different complex-valued Q-fields (eight on the square
links, and four along the diagonal links) and four different λ-fields and x-spinors at each of
the four sites. However, we have checked that at every saddle point in the SRO region of the
phase diagram (xiσ = 0) each of the eight Q-fields on the horizontal and vertical links take
the same value. Likewise, the four Q-fields on the diagonals are all equal, as well as all four
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λ-fields. Thus the 2 ×2-site unit cell can be reduced to only a single site per unit cell as shown
in figure 3. We expect this to also hold in the LRO phases, in accord with previous work on
the Sp(N ) model [22].

Q2

Q1y

Q1x
x

y

Figure 3. The one-site unit cell for the Sp(N ) Heisenberg antiferromagnet on the anisotropic
triangular lattice.

The zero-temperature phase diagram is a function of two variables: J2/J1 and κ . The
various saddle points can be classified in several ways. Both SRO and LRO phases may be
characterized in terms of an ordering wavevector �q via the relation �q = 2�kmin, where �kmin is the
wavevector at which the bosonic spinon energy spectrum has a minimum. The spin structure
factor S(�q) peaks at this wavevector [22]. LRO is signalled by non-zero spin condensate xiσ ,
which we assume occurs at only one wavevector, �kmin; that is, xj↑ = x exp(i�kmin · �rj) and
xj↓ = −ix exp(−i�kmin ·�rj). The phases may be further classified [8] according to the particular
value of �q. There can be commensurate collinear ordering tendencies where the spins rotate
with a period that is commensurate with the underlining lattice. Alternatively, there may be
incommensurate coplanar ordering tendencies where the spins rotate in a two-dimensional spin
space with a period that is not commensurate with the lattice.

The phase diagram is shown in figure 4. Note that the general shape of the phase diagram
is qualitatively consistent with the finding of spin-wave calculations [16, 17] that quantum
fluctuations are largest for J2/J1 ∼ 0.5 and large J2/J1. For large enough values of κ , the
ground state has magnetic LRO. As the magnetic LRO phases break Sp(N ) symmetry, there
are gapless Goldstone spin-wave modes. As a check on the calculation, we note that in the
κ → ∞ limit there is a transition between the Néel ordered and incommensurate (q, q) LRO
phase at J2/J1 = 0.5 in agreement with the classical large-spin limit. At smaller values of κ
there are quantum disordered phases that preserve global Sp(N ) symmetry. In the N → ∞
limit these are rather featureless spin liquids with gapped, free, spin-1/2 bosonic excitations
(spinons). Finite-N fluctuations, however, induce qualitative changes to the commensurate
SRO phases (see below). In the limiting case of the nearest-neighbour square lattice, J2 = 0,
we reproduce the previously obtained result [8] that Néel order arises for κ > 0.4. In the
opposite limit of decoupled one-dimensional spin chains, J1 = 0, the ground state is in a
disordered phase at all values of κ . There are five phases in all, three commensurate and two
incommensurate, as detailed in the following two subsections.

3.2.1. Commensurate phases. At small to moderate J2/J1 there are two phases with
Q1x = Q1y 
= 0, and Q2 = 0. The eigenspectrum ωk has its minimum at �k = ±(π/2, π/2),
with the implication that the spin–spin correlation function peaks at �q = (π, π). Néel LRO
with xiσ 
= 0 appears when κ is sufficiently large. The boundary between LRO and SRO phases
is independent of J2/J1 except at one end of the boundary, but this is expected to be an artifact
of the large-N limit [22]. Finite-N corrections should bend this horizontal phase boundary.
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1/ κ
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Figure 4. The zero-temperature phase diagram of the Sp(N ) Heisenberg antiferromagnet at largeN .
The strength of the quantum fluctuations is set by the parameter 1/κ (vertical axis). Dimerization
patterns induced by finite-N fluctuations are shown in the insets.

At large J2/J1 and small κ the ground state is a disordered state characterized by
Q1x = Q1y = 0 and Q2 
= 0. The chains decouple from one another exactly in the large-
N limit, but at any finite N the chains will be coupled by the fluctuations about the saddle
point. Also, xiσ = 0 as it must, by the Mermin–Wagner theorem. The Sp(N ) solution does not
properly describe the physics of completely decoupled spin-1/2 chains. All spin excitations are
gapped, and there is dimerization at finite N (see below). This behaviour is in marked contrast
to the gapless, undimerized ground state of the physical SU(2) spin-1/2 nearest-neighbour
Heisenberg chain [12].

3.2.2. Incommensurate phases. At intermediate values of J2/J1, there are two incom-
mensurate phases with Q1x = Q1y 
= 0, and Q2 
= 0. The ordering wavevector �q = (q, q)

with q varying continuously from π to π/2, a sign of helical spin order in a given plane. The
inverse κ−1

c of the critical κ separating LRO from SRO peaks near the isotropic triangular
point J2/J1 = 1, where it agrees in value with that reported in a prior study of the triangular
lattice [22], and then decreases with a long tail as J2/J1 increases. As the one-dimensional limit
of decoupled chains is approached, κc → ∞. Again this accords with the Mermin–Wagner
theorem.

All the phase transitions are continuous except for the transitions between the (π, π) LRO
phase and the (q, q) SRO phase which is first order. Fluctuations at finite N , however, modify
the mean-field results [8]. The modifications are only quantitative for the LRO phases, and for
the incommensurate SRO phase. In particular, instantons in the U(1) gauge field have little
effect in the incommensurate SRO phase which is characterized by non-zero Q2. The Q2-
fields carry charge ±2, so when they acquire a non-zero expectation value, this is equivalent to
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the condensation of a charge-2 Higgs field. Fradkin and Shenker [25] showed some time ago
that a Higgs condensate in 2 + 1 dimensions quenches the confining U(1) gauge force. Singly
charged spinons are therefore deconfined; instead the instantons which carry magnetic flux
are confined, and no dimerization is induced [8]. The relevant non-linear sigma model which
describes the transition from an ordered incommensurate phase to a quantum disordered phase
has been studied by Chubukov, Sachdev, and Senthil [26].

In the case of the commensurate (π, π) SRO and the decoupled chain phases, instantons
do alter the states qualitatively. The Berry’s phases associated with the instantons lead to
columnar spin–Peierls order [8, 24] (equivalent to dimer order) as indicated in figure 4. The
dimerization pattern induced in the decoupled chain phase is similar to that found by White
and Affleck [21] for a pair of chains with zigzag coupling. Furthermore, spinon excitations
are confined into pairs by the U(1) gauge force.

Note that the deconfined spinons in the (q, q) SRO phase are qualitatively different to the
spinons found in the limit of completely decoupled chains, J1 = 0. The (q, q) SRO phase
exhibits true two-dimensional fractionalization, in contrast to the decoupled one-dimensional
chains. The spinons are massive, again in contrast to those found in one-dimensional half-odd-
integer spin chains. The transition from the dimerized chain phase at small J1/J2, which has
confined spinons, to the deconfined incommensurate phase at larger J1/J2 is described by a
(2 + 1)-dimensional Z2 gauge theory1. In fact the (q, q) SRO phase is similar to a resonating-
valence-bond (RVB) state recently found on the isotropic triangular lattice quantum dimer
model [27]. The phase has ‘topological’ order; consequently when the lattice is placed on
a torus (that is, when periodic boundary conditions are imposed), the ground state becomes
fourfold degenerate in the thermodynamic limit [28, 29].

3.3. The physical spin-1/2 limit

It is interesting to examine in more detail the physical spin-1/2 limit corresponding to κ = 1.
In figure 5 we plot the ordering wavevector q as a function of the ratio J2/(J1 + J2). Note
that (i) quantum fluctuations cause the Néel phase to be stable for larger values of J2/J1

than classically, and (ii) the wavevector associated with the incommensurate phases deviates
from the classical value. Similar behaviour was also found in studies based on a series
expansion [30], and slave bosons including fluctuations about the saddle point [31].

Commensurate q = π Néel order persists up to J2/(J1 +J2) = 0.369, and this is followed
by the incommensurate LRO phase for 0.369 < J2/(J1 + J2) < 0.880. Then a tiny sliver of
the incommensurate SRO phase arises for 0.880 < J2/(J1 + J2) < 0.886. Finally there is the
decoupled chain phase for 0.886 < J2/(J1 + J2) � 1. A strikingly similar phase diagram has
been obtained by the series expansion method [30]. A comparison between the Sp(N ) and
series expansion results is shown in figure 6. Both methods suggest that there exists a narrow
SRO region between Néel and incommensurate ordered phases, though in the Sp(N ) case the
region does not extend all the way up to κ = 1. Possibly finite-N corrections to this large-N
result could change the phase diagram quantitatively such that the (q, q) SRO phase persists
up to κ = 1 in agreement with the series expansion results. Another difference is that the
Sp(N ) result shows no dimerization in this narrow SRO region (due to the above-mentioned
Higgs mechanism), while the series expansion indicates possible dimer order.

Similar results have also been obtained in a weak-coupling renormalization group (RG)
treatment of the Hubbard model on the anisotropic triangular lattice [32]. For the special
case of a pure square lattice (with next-nearest-neighbour hopping t2 = 0) at half-filling, the

1 We thank S Sachdev for emphasizing these differences.
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Figure 5. The ordering wavevector q (in units of π/a) of the large-N Sp(N ) Heisenberg anti-
ferromagnet at κ = 1, which corresponds to spin-1/2 in the physical Sp(1) limit. The solid line is
the classical ordering wavevector [17].
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Figure 6. Comparison of the Sp(N ) phase diagram at κ = 1 with the results of a series
expansion [30].

antiferromagnetic (AF) couplings diverge much faster during the RG transformations than
couplings in the BCS sector, indicating a tendency towards magnetic LRO. As t2 is turned on,
BCS and AF instabilities begin to compete. For sufficiently large t2, a crossover occurs to a
dx2−y2 BCS instability, suggesting that the system is now in a magnetic SRO state. Further
increasing t2 to reach the isotropic triangular lattice (t1 = t2), there are indications that long-
range AF order re-enters. Finally, for t2 � t1 LRO tendencies are again eliminated, this time
by the strong one-dimensional fluctuations. It is remarkable that the same sequence of ordering
and disordering tendencies—LRO to SRO to LRO to SRO—occurs in all three approximate
solutions.
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3.4. Application to materials

The region of the phase diagram intermediate between the square lattice and the isotropic
triangular lattice is relevant to the insulating phase of the organic κ-(BEDT-TTF)2X materials.
The expected range in the spin-exchange interaction [3] is J2/J1 ∼ 0.3 to 1. Depending on
the precise ratio J2/J1, our phase diagram indicates that these materials could be in the Néel
ordered phase, the (q, q) LRO phase, or possibly the paramagnetic (q, q) SRO phase (see
above). In fact antiferromagnetic ordering with a magnetic moment of 0.4 µB to 1 µB per
dimer has been seen in the splitting of proton NMR lines in the κ-(BEDT-TTF)2Cu[N(CN)2]Cl
compound [34]. It is conceivable that a quantum phase transition from the Néel ordered phase
to the paramagnetic (q, q) SRO phase or to the (q, q) LRO phase can be induced by changing
the anion X.

Coldea et al [33] have recently performed a comprehensive neutron scattering study of
Cs2CuCl4. They suggest that this material is described by the spin-1/2 version of our model
with J2/J1 = 2.5 and J2 = 0.37 meV. The measured incommensurability with respect to
Néel order, π − q, is reduced below the classical value by a factor 0.47, consistent with
series results [30] (our Sp(N ) solution shows a smaller reduction). Maps of the excitation
spectra show that the observed dispersion is renormalized upward in energy by a factor of
1.67, which can be compared to theoretical values of 1.18 for the square lattice and 1.57 for
decoupled chains. Furthermore, the dynamical structure factor S(�q, ω) does not exhibit well
defined peaks corresponding to well defined spin-1 magnon excitations. Instead there is a
continuum of excitations similar to those expected and seen in completely decoupled spin-1/2
Heisenberg chains. In the case of a chain these excitations can be interpreted as deconfined
gapless spin-1/2 spinons.

In the relevant parameter regime, J2/J1 = 2.5, the large-N Sp(N ) phase diagram predicts
that the ground state is spin ordered with an incommensurate wavevector (q, q). However,
as noted above, finite-N corrections could move the phase boundaries such that the physical
spin-1/2 limit is in fact described by the (q, q) SRO phase. In this phase there is a non-zero
gap to the lowest-lying excitations (which occur at wavevector (kmin, kmin) = (q/2, q/2))
rather than gapless excitations. At κ = 0.56 and J2/J1 = 2.5, in the large-N limit, the system
is in the (q, q) SRO phase of figure 4 and the spinon gap is approximately 0.05J2. This is
much smaller than the resolution of the experiment (see figure 2(a) in reference [33]), in which
excitation energies have only been measured down to about 0.5J2. The corresponding spinon
dispersion is shown in figure 7. Again we stress that the spinons in the incommensurate SRO
phase are qualitatively different to those which arise in a one-dimensional chain.

In the deconfined (q, q) SRO phase, there are no true spin-wave excitations, as spin
rotational symmetry is unbroken. Nevertheless, when the gap for creating a spinon is small,
the spin-wave description remains useful. For example, in neutron scattering experiments,
spinons are created in pairs, as each spinon carries spin-1/2. So a spin wave may be viewed
as an excitation composed of two spinons, though of course this spin wave does not exhibit
the sharp spectral features of a true Goldstone mode. At large N the spinons do not interact;
finite-N fluctuations will lead to corrections in the combined energy and to a finite lifetime.
The minimum energy of such a spin wave of momentum �q is given, in the large-N limit, by

E�q = Min{ω(�q/2 + �p/2) + ω(�q/2 − �p/2)} (14)

where the minimization is with respect to all possible relative momenta �p. The resulting spin-
wave dispersion is plotted in figure 8 alongside the classical result, scaled to the same value
of the spin. The Sp(N ) calculation shows a rather large upward renormalization in the energy
scale compared to the classical calculation; this is a result of the quantum fluctuations which
are retained in the large-N limit.
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Figure 7. Spinon dispersion along the (1, 1) direction in the deconfined (q, q) SRO phase for
κ = 0.56, J1 = 0.148 meV, and J2 = 0.37 meV; thus, J2/J1 = 2.5. The lowest-energy excitations
occur at an incommensurate wavevector of k ≈ 0.26π where there is a non-zero energy gap of
approximately 0.02 meV.
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Figure 8. The minimum energy of two spinons in the (q, q) SRO phase (solid line) compared to
that of classical spin waves (dashed line) for the same parameters as in figure 7. The dispersion, in
the case of the Sp(N ) theory, is obtained from equation (14). The classical spin-wave dispersion is
obtained from reference [17] where it was scaled to spin-1/2. These energies have been multiplied
here by a factor of κ2 ≈ 0.31 to account for the reduced magnitude of the spin. The large
upward renormalization in the Sp(N ) excitation energies compared to the classical energies is due
to quantum fluctuations.

In the incommensurate (q, q) LRO phase (κ = 1 and N → ∞) the spinon spectrum has
gapless excitations, as shown in figure 9. Apart from the absence of the small gap, the spin-wave
dispersion in the ordered phase is similar to the minimum-energy spectrum in the disordered



Large-N solutions of the Heisenberg and Hubbard–Heisenberg models 5171

−1.0 −0.5 0.0 0.5 1.0
(k, k)     

0.0

0.2

0.4

0.6

0.8

ω (meV)

πx

Figure 9. Spinon dispersion along the (1, 1) direction in the incommensurate (q, q) LRO phase.
As in figure 7, J1 = 0.148 meV and J2 = 0.37 meV, but now κ = 1. Gapless excitations occur at
an incommensurate wavevector of k ≈ 0.27π .

phase. Again there is an upward renormalization of the energy scale as shown in figure 10,
though the ratio is relatively smaller than in the more quantum κ = 0.56 case. The size of
the renormalization is in good agreement with that seen in the Cs2CuCl4 experiment [33]. It
is important to note that finite-N gauge fluctuations bind spinons in the LRO phase into true
spin-wave excitations, with corresponding sharp spectral features. In contrast, as noted above,
spectral weight is smeared out in the SRO phase. A large spread of spectral weight is seen in
the neutron scattering experiments [33]. But as the incommensurate SRO and LRO states are
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Figure 10. The same as figure 8 except in the incommensurate (q, q) LRO phase with the same
parameters as in figure 9: J1 = 0.148 meV and J2 = 0.37 meV, and κ = 1.
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separated by a continuous phase transition (see figure 4), in the vicinity of the phase boundary
it is difficult to distinguish the two types of excitation spectrum. The spin moment in the LRO
phase is small there, as is the gap in the SRO phase. Further experiments on Cs2CuCl4 may
be needed to determine which of the two phases is actually realized in the material.

4. The SU(N ) Hubbard–Heisenberg model

We now turn our attention to the charge degrees of freedom by studying the hybrid Hubbard–
Heisenberg model. This model should provide a reasonable description of the layered organic
materials because the Hubbard interaction is comparable in size to the hopping matrix elements,
U ≈ t . Thus the stringent no-double-occupancy constraint of the popular t–J model should
be relaxed. In the large-N limit it is also better to work with the hybrid Hubbard–Heisenberg
model than with the pure Hubbard model because the crucial spin-exchange processes are
retained in the large-N limit [11]. In the Hubbard model these are only of order 1/N and
therefore vanish in the mean-field description.

As there are now both charge and spin degrees of freedom, it is no longer possible to
employ purely bosonic variables, in contrast to the case for the previous section. Instead
we use antisymmetric representations of the group SU(N ) as the large-N generalization of
the physical SU(2) system. As shown below, this generalization precludes the possibility of
describing magnetic LRO or superconducting phases, at least in the large-N limit. However, as
the same representation is placed on each lattice site, this large-N generalization works equally
well for bipartite and non-bipartite lattices. It has been applied to the spin-1/2 Heisenberg
antiferromagnet on the kagomé lattice [35].

4.1. Brief review of the approach

The Hubbard–Heisenberg Hamiltonian on the anisotropic triangular lattice is specified by
equation (3). The generalized SU(N ) version is obtained [11] by simply letting the spin index
σ in equation (3) run from 1 to N (where N is even):

H =
∑
〈ij〉

[
−t1(c

†σ
i cjσ + H.c.) − J1

N

(
c

†α
i cjαc

†β
j ciβ +

1

2
ninj

)]

+
∑
〈〈ij〉〉

[
−t2(c

†σ
i cjσ + H.c.) − J2

N

(
c

†α
i cjαc

†β
j ciβ +

1

2
ninj

)]

+
U

N

∑
i

(c
†σ
i ciσ − N/2)2 (15)

where all spin indices are summed over. Here we have also rescaled the interaction strengths
Ji/2 → Ji/N and U/2 → U/N to make each of the terms in the Hamiltonian of order N . At
half-filling, the only case we consider here, a further simplification occurs as the term Jijninj

is simply a constant. There is no possibility of phase separation into hole-rich and hole-poor
regions, nor can stripes form [36], as the system is at half-filling. We drop this constant term
in the following analysis.

We could also include a biquadratic spin–spin interaction of the form J̃ (�Si · �Sj)
2 with

J̃ > 0. In the physical SU(2) limit this term does nothing except renormalize the strength
of the usual bilinear spin–spin interaction. But for N > 2 it suppresses dimerization [11],
as the concentration of singlet correlations on isolated bonds is particularly costly when the
biquadratic term is included. Thus there exists a family of large-N theories parametrized by
the dimensionless ratio J̃ /J , each of which has the same physical SU(2) limit. In this paper,
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however, we set J̃ = 0 as we find that the phase most likely to describe the metallic regime
of the organic superconductors is a uniform phase with no dimerization which is stable even
at J̃ = 0.

After passing to the functional-integral formulation in terms of Grassmann fields, the
quartic interactions are decoupled by a Hubbard–Stratonovich transformation which introduces
real-valued auxiliary fields φ on each site and complex-valued χ fields directed along each
bond:

φi = i
U

N
(c∗σ

i ciσ − N/2) χij = Jij

N
c∗σ
i cjσ . (16)

Clearly 〈φi〉 is proportional to the local charge density relative to half-filling (corresponding
to N/2 fermions at each site) and χij may be viewed as an effective hopping amplitude for
the fermions for hopping between site i and j. The effective action in terms of these auxiliary
fields, which may be viewed as order parameters, can now be obtained by integrating out
the fermions. We note that, unlike in the bosonic formulation of the pure antiferromagnet,
here there is no possibility of magnetic LRO as the order parameters χ and φ are global
SU(N ) invariants, and of course there is no possibility of Bose condensates in the fermionic
antisymmetric representation of SU(N ). Superconductivity likewise is not possible in the
large-N limit because the order parameters are invariant under global U(1) charge-symmetry
rotations. In the Heisenberg limit t → 0 the action is also invariant under local U(1) gauge
transformations as long as the χ - and φ-fields transform as gauge fields:

χij(τ ) → ei[θi(τ )−θj (τ )]χij(τ ) φi(τ ) → φi(τ ) − dθi(τ )/dτ.

For the more general case of Hubbard–Heisenberg model, this local U(1) gauge symmetry
breaks to only global U(1) gauge symmetry, reflecting the conservation of total charge.

Since Seff has an overall factor of N , the saddle-point approximation is exact at N → ∞.
We expect φ and χ to be time-independent at the saddle point, so Seff can be written in terms
of the free energy of fermions moving in a static order-parameter background:

Seff [φ, χ ] = βF [φ, χ;µ]

where
F [φ, χ;µ]

N
=

∑
〈ij〉

|χij |2
J1

+
∑
〈〈ij〉〉

|χij |2
J2

+
∑

i

[
1

4U
φ2

i − i

2
φi

]

− 1

β

∑
k

ln{1 + exp[−β(ωk − µ)]}. (17)

Here the ωk are the eigenenergies of the mean-field Hamiltonian HMF :

HMF =
∑
〈ij〉

[(−t1 + χij)c
†
i cj + H.c.] +

∑
〈〈ij〉〉

[(−t2 + χij)c
†
i cj + H.c.] + i

∑
i

φic
†
i ci. (18)

In the zero-temperature β → ∞ limit the fermionic contribution to the free energy reduces to a
sum over the occupied energy eigenvalues. The saddle-point solution is found by minimizing
the free energy with respect to χ -fields, and maximizing it with respect to the φ-fields. We
carry out the minimization numerically via the simplex-annealing method [23] on lattices with
up to 40 × 40 sites.

After ascertaining the zero-temperature phase diagram we then study the effects of non-
zero temperature. As the temperature is raised, β → 0 and the last term in equation (17)
approaches kB ln 2 per site reflecting the fact that each site is half-occupied. The entropy then
dominates the free energy, terms linear in χij in equation (17) disappear, and the free energy
is minimized by setting χij = 0. Thus as the temperature is raised, antiferromagnetic spin
correlations are weakened and then eliminated altogether.
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4.2. The zero-temperature phase diagram of the SU(N ) Hubbard–Heisenberg model

We again choose a 2 × 2 unit cell, anticipating that translational symmetry can be broken at
the saddle points. The 2 × 2 unit cell requires twelve different complex χ -fields and four
different real φ-fields as shown in figure 11. At half-filling all φi = 0. As expected, there is
no site-centred charge-density wave, and the phase diagram does not depend on the size of the
Hubbard interactionU (so long as it is repulsive) because fluctuations in the on-site occupancy,
which are O(

√
N) � N/2, are suppressed in the large-N limit. Therefore the saddle-point

solutions may be classified solely in terms of the remaining order parameter, the χ -fields. For
the special case t1 = t2 = 0 it is important to classify the phases in a gauge-invariant way
because there are many gauge-equivalent saddle points. In this limit there are two important
gauge-invariant quantities:

(i) The magnitude |χij |2 which is proportional to the spin–spin correlation function 〈�Si · �Sj〉.
Modulations in |χ | signal the presence of a bond-centred dimerization.

(ii) The plaquette operator 3 ≡ χ12χ23χ34χ41, where 1, 2, 3, and 4 are sites on the corners
of a unit plaquette. On identifying the phase of χ as a spatial gauge field it is clear that
the plaquette operator is gauge invariant, and its phase measures the amount of magnetic
flux penetrating the plaquette [11]. Different saddle points are therefore gauge equivalent
if the plaquette operator has the same expectation value, even though the χ -fields may be
different. In the Heisenberg limit, the flux always equals to 0 or π (mod 2π ), so a gauge
can always be found such that all the χ -fields are purely real.
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Figure 11. The 2 × 2-site unit cell of the SU(N ) Hubbard–Heisenberg model on the anisotropic
triangular lattice. Arrows denote the orientation of the complex-valued χij -fields.

Away from the pure Heisenberg limit t1 = t2 = 0 we further classify the saddle-point
solutions in terms of whether or not they break time-reversal symmetry (T̂ ). Finally, as there are
four independent parameters (t1, t2, J1, and J2) the phase diagram lives in a three-dimensional
space of their dimensionless ratios. To reduce this to a more manageable two-dimensional
section, we assume that J1/J2 = (t1/t2)

2; then by varying J1 and the two hopping matrix
elements we explore a two-dimensional space. The resulting phase diagram is shown in
figure 12. We summarize the phases which appear in the diagram in the following subsections.

4.2.1. The one-dimensional dimer phase. This phase exists in the region J2 > J1 > t1 and it
exhibits spin–Peierls (=dimer) order. All χ2-fields are negative real numbers with χ1

2 = χ3
2 ,

χ2
2 = χ4

2 , and |χ1
2 | > |χ2

2 |. Also, all χ1-fields are either small negative real numbers or zero
with χ1

1 = χ3
1 = χ5

1 = χ7
1 < 0, χ2

1 = χ4
1 = χ6

1 = χ8
1 = 0, and |χ1

1 | � |χ2
2 |. See figure 13
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Figure 12. The zero-temperature phase diagram of the SU(N ) Hubbard–Heisenberg model on the
anisotropic triangular lattice. The metallic uniform region is indicated by dark shading while light
shading marks the semi-metallic staggered flux phase.

Figure 13. The one-dimensional dimer phase. Dark lines indicate bonds with strong spin–spin
correlations. These are the dimers.

for a sketch. The system breaks up into nearly decoupled dimerized spin chains. This phase
preserves T̂ -symmetry as all the χ -fields are real. It is insulating as there is a large gap in the
energy spectrum at the Fermi energy. The phase is very similar to the decoupled chain phase
of the insulating Sp(N ) model; in fact the dimerization pattern is identical to one of two such
possible patterns in the Sp(N ) model (see figure 4) and echoes the pattern found by White
and Affleck for the two-chain zigzag model [21]. In the extreme one-dimensional limit of
J1 = t1 = 0 the SU(N ) solution, like the Sp(N ) solution, fails [11] to accurately describe the
physics of decoupled chains, for at half-filling, the physical one-dimensional SU(2) Hubbard
model is neither dimerized nor spin gapped. The inclusion of the biquadratic interaction
suppresses dimerization [37] and yields a state qualitatively similar to the exact solution of the
physical system, but for simplicity we do not consider such a term here.

4.2.2. The box (also called the ‘plaquette’) phase. This phase is also insulating and consists
of isolated plaquettes with enhanced spin–spin correlations [29,38]. See figure 14 for a sketch.
All χ1-fields are complex with |χ1

1 | = |χ3
1 | > |χ2

1 | = |χ4
1 | > |χ6

1 | = |χ8
1 | > |χ5

1 | = |χ7
1 |.

The χ2-fields are small, |χ1
2 | = |χ2

2 | = |χ3
2 | = |χ4

2 | � |χ5
1 |. The phase θ of the plaquette

product χ1
1χ

2
1χ

3
1χ

4
1 is neither 0 nor π in general. The box phase breaks T̂ -symmetry when
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Figure 14. The box (or ‘plaquette’) phase with circulating currents.

t1 
= 0. As time-reversal symmetry is broken, there are real orbital currents circulating around
the plaquettes [39] as shown in the figure. Apart from T̂ -breaking, this phase is rather similar
to the (π, π) SRO phase of the Sp(N ) model as it is a commensurate SRO phase with a large
spin gap.

4.2.3. The staggered flux phase (SFP). Allχ1-fields are equal, with an imaginary component,
and the χ2-fields are equal, real, and much smaller in magnitude than the χ1-fields. The phase
of the plaquette operator differs in general from 0 or π ; see figure 15 for a sketch. The
staggered flux phase breaks T̂ -symmetry. Like in the box phase, there are real orbital currents
circulating around the plaquettes [39], in an alternating antiferromagnetic pattern. The SFP
is semi-metallic as the density of states (DOS) is small, and in fact vanishes linearly at the
Fermi energy at J2 = 0. Apart from T̂ -breaking this phase is rather similar to the (π, π) LRO
phase of the Sp(N ) antiferromagnet, as the spins show quasi-long-range order with power-law
decay in the spin–spin correlation function. In the limiting case of a pure Heisenberg AF on
the nearest-neighbour square lattice, t1 = t2 = J2 = 0, gauge fluctuations at sufficiently small
N are expected to drive the SFP (which can be stabilized against the box phase by the addition
of the biquadratic interaction) into a (π, π) Néel ordered state [40].

Figure 15. The staggered flux phase (SFP) with circulating currents.

4.2.4. The uniform phase. All χ -fields are negative real numbers and χ1
1 = χ2

1 = · · · = χ8
1 ,

χ1
2 = χ2

2 = χ3
2 = χ4

2 withχ1
1 
= χ1

2 in general. See figure 16 for a sketch. This phase preserves
T̂ -symmetry and since all χ -fields are real, they simply renormalize hopping parameters t1, t2.
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Figure 16. The uniform phase with no broken symmetries. The uniform phase is a Fermi liquid.

The uniform phase is therefore a metallic Fermi liquid. Spin–spin correlations in the uniform
phase decay as an inverse power law of the separation, with an incommensurate wavevector,
so the uniform phase behaves similarly to that in the (q, q) LRO phase of the Sp(N ) model
(see below).

4.3. Global similarities between SU(N ) and Sp(N ) phase diagrams

There are some global similarities between the SU(N ) phase diagram of the Hubbard–
Heisenberg model (figure 12) and the Sp(N ) phase diagram of the insulating Heisenberg
antiferromagnet (figure 4). We have already pointed out similarities between the four phases
of the SU(N ) model and the decoupled chain, (π, π) SRO, (π, π)LRO, and (q, q)LRO phases
of the Sp(N ) model. Apparently the dimensionless parameter J1/t1 on the vertical axis of the
SU(N ) phase diagram (figure 12) is the analogue of the quantum parameter 1/κ of the Sp(N )
phase diagram. The reason why these two dimensionless parameter play similar roles can be
understood by considering the limit of the pure insulating antiferromagnet, corresponding to
t1 → 0 and t2 → 0. In these limits, the SU(N ) model can only be in the purely insulating
box phase, or in the dimerized phase. The spins are always quantum disordered, and behave
like the extreme quantum κ → 0 limit of the Sp(N ) model. In the opposite limit t1 → ∞
and t2 → ∞ the spin–spin correlation function decays more slowly, as an inverse power law
instead of exponentially. This is as close to LRO as is possible in the large-N limit of the
SU(N ) model. Roughly then it corresponds to the ordered classical κ → ∞ limit of the
Sp(N ) model.

4.4. Observable properties of the SU(N ) Hubbard–Heisenberg model

We now comment on the possible relevance of our large-N solution to the electronic and
magnetic properties of the organic superconductors. In reference [3] it is estimated that
J2/J1 ∼ 0.3 to 1 and J1/t1 ∼ 0.5 to 2. Figure 12 then implies that the ground state is
the uniform phase, which, as noted above, is a rather ordinary Fermi liquid with no broken
symmetries.

We note that in the one-dimensional limit (t1 = J1 = 0) and in the square-lattice limit
(t2 = J2 = 0), nesting of the Fermi surface is perfect, and the system is driven into an insulating
phase no matter how large the hopping amplitudes. Away from these two extreme limits,
however, there is a non-trivial metal–insulator transition line. This accords with expectations
because as the Fermi surface is not perfectly nested, the metallic state is only eliminated at a non-
zero value of J1/t1. Experimentally it is found that upon increasing pressure, a SIT transition
from the antiferromagnetic insulator to a superconductor is seen in the κ-(BEDT-TTF)2X
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family of materials [34, 41]. This transition can be understood in terms of the SU(N ) phase
diagram as follows. As pressure increases, the effective hopping amplitudes t1 and t2 also
increase because Coulomb blocking is less effective [3]. The bandwidth broadens, but the
spin-exchange couplings J1 and J2 remain nearly unchanged as these are determined by the
bare, not the effective, hopping matrix elements. Thus the ratio J1/t1 is reduced at high
pressure, and the many-body correlations weaken. From the phase diagram (figure 12) it is
apparent that the system can be driven from an insulating state into a metallic state, which
presumably superconducts at sufficiently low temperature. Thus the transition to a conducting
state at high pressure can be seen as being due to bandwidth broadening, as in the Brinkman–
Rice picture of the MIT.

We plot the DOS as a function of temperature in figure 17 for three points inside the
uniform phase identified in table 1. The DOS decreases as the temperature decreases from
room temperature down to absolute zero. Clearly the pseudogap is more prominent near the
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Figure 17. Density of states per unit volume at the Fermi energy as a function of temperature for
three points, indicated by the inset and specified in table 1, inside the uniform phase.

Table 1. Parameters (in meV) for the three points in figure 17.

Symbol in figure 17 t1 t2 J1 J2 J1/t1 J2/(J1 + J2)

Star 6 5.4 24 19.2 4 0.44
Dot 12 10.8 24 19.2 2 0.44
Triangle 24 21.6 24 19.2 1 0.44
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boundary between the conducting uniform phase and the semi-metallic SFP and insulating
box phases. The drop in the DOS could qualitatively explain the 30% depression seen in the
uniform susceptibility [34] (NMR experiments find a reduction of about 50% as the temperature
decreases from 100 K to 10 K [6, 7]). The behaviour may be understood as follows. As the
temperature decreases, antiferromagnetic spin–spin correlations develop. These correlations
are signalled in the mean-field theory by the link variables χij which become non-zero at
low enough temperature. Electrons on neighbouring sites then tend to have opposite spin,
reducing Pauli blocking, and making their kinetic energy more negative. The band widens and
the density of states drops.

5. Discussion

We have solved the bosonic Sp(N ) Heisenberg and fermionic SU(N ) Hubbard–Heisenberg
models on the anisotropic triangular lattice in the large-N limit. The bosonic Sp(N ) rep-
resentation of the Heisenberg model is useful for describing magnetic ordering transitions.
It therefore may be an appropriate description of the insulating phase of the layered organic
superconductors κ-(BEDT-TTF)2X and of the insulating Cs2CuCl4 compound. The fermionic
SU(N ) Hubbard–Heisenberg model provides a complementary description of the charge sector,
in particular the physics of metal–insulator transitions and the unconventional metallic phases.
Systematic expansions in powers of 1/N about the large-N limit are possible for either model.

For the Sp(N ) model we found five phases: (i) three commensurate phases, the (π, π)

LRO and SRO phases, and the decoupled chain phase; and (ii) two incommensurate phases, the
(q, q) LRO and SRO phases. Passing from the square lattice (J2 = 0) to the one-dimensional
limit (J1 = 0) at κ = 1 which corresponds to spin-1/2 in the physical Sp(1) limit, first there
is the Néel ordered phase, the incommensurate (q, q) LRO phase, the incommensurate (q, q)
SRO phase, and finally a phase consisting of decoupled chains. These phases are similar
to those obtained from a series expansion method [30] and a weak-coupling renormalization
group technique [32]. The effects of finite-N fluctuations on the saddle-point solutions were
also discussed. The observed dispersion of spin excitations in the Cs2CuCl4 material [33] can
be described either as spin waves in the incommensurate (q, q) LRO phase, or in terms of pairs
of spinons in the deconfined (q, q) SRO phase.

The zero-temperature phase diagram of the SU(N ) Hubbard–Heisenberg model in the
large-N limit has a 1D dimer phase, a box (or plaquette) phase, a staggered flux phase, and a
uniform phase. In the extreme 1D and square-lattice limits, the ground state of the half-filled
Hubbard–Heisenberg model is always insulating because the nesting of the Fermi surface is
perfect. But away from these two extreme limits there is a metal–insulator transition. For
parameters appropriate to the κ-(BEDT-TTF)2X class of materials we find that the conducting
regime is described by our uniform phase, which is a rather conventional Fermi liquid with
no broken symmetries. In this phase we find that the density of states at the Fermi level
decreases at low temperatures, due to the development of antiferromagnetic correlations. This
could explain the depression seen in the uniform susceptibility of the organic superconducting
materials at low temperatures. It agrees qualitatively with experiments which suggest the
existence of a pseudogap.

We have used two models instead of one because the two large-N theories have com-
plementary advantages and disadvantages. The bosonic Sp(N ) approach is not suitable for
describing electronic properties, as there are no fermions. The fermionic SU(N ) approach, on
the other hand, is not useful for describing magnetic ordering, as the order parameters are all
SU(N ) singlets. Neither mean-field approximation can describe the superconducting phase.
The fermionic Sp(N ) Hubbard–Heisenberg model does support superconducting states, but no
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non-superconducting metallic phases [36]. Whether or not a single model can be constructed
which is exact in a large-N limit and yet encompasses all the relevant phases remains an open
problem.
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